
Team Number: 12

Client: Mat Wymore

Team Leader: John Paton

Meeting Scribe: Bret Knous

Design Facilitator: Vismay Gehlot

Test Facilitator: Luke Knous

Report Facilitator: Rithwik Gokhale

E-mail: sddec21-12@iastate.edu

Website: https://sddec21-12.sd.ece.iastate.edu

Revised: 12/8/2021

1

mailto:sddec21-12@iastate.edu
https://sddec21-12.sd.ece.iastate.edu

Development Standards & Practices Used
There are two standards that have been considered for this project; engineering
development standards and engineering coding standards. We shall be following the
Agile method using two week sprints for the engineering development standards and we
will be following the coding standards outlined by the below link. In addition, we shall be
adhering to the COVID-19 safety guidelines of Iowa State University.

Coding Standards:
https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/doc
umentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf

Summary of Requirements

Requirements:
● Must work on a typical mobile device/smartphone
● May be platform specific (e.g. Android), though cross-platform is ideal
● Interface must be user-friendly (typical user is expected to be viewing device

from roughly one meter away and using one non-primary finger to navigate)
● Capable of loading/upgrading a recipe from an arbitrary URL
● "Upgraded" recipes should load in 5s or less
● Solution should not interfere with the source's revenue stream (e.g. ads should

still display)
● Should not require a user account (may be optional if it would help with desired

features)
● Should not require backend infrastructure (server)

2

https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/documentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf
https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/documentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf

Applicable Courses from Iowa State University Curriculum
1. COM S 309 - Software Development Practices
2. COM S 363 - Introduction to database management
3. COM S 227 - Introduction to Object oriented programming
4. COM S 228 - Data Structures
5. COM S 319 - Construction of User Interfaces
6. CPR E 388 - Android development
7. COM S 311 - Introduction to Algorithms

New Skills/Knowledge acquired that was not taught in courses
1. Javascript
2. React Native Development
3. Jest Javascript testing frameworks
4. Project Management and team-work through remote interactions
5. Maintaining COVID-19 health standards
6. Expo

3

Table of Contents
1 Introduction 6

1.1 Acknowledgement 6

1.2 Problem and Project Statement 6

1.3 Operational Environment 6

1.4 Requirements 7

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 8

1.7 End Product and Deliverables 8

2 Project Plan 9

2.1 Risks And Risk Management/Mitigation 9

2.2 Project Tracking Procedures 10

3 Design 10

3.1 Previous Work And Literature 10

3.2 Design Thinking 12

3.3 Proposed Design 12

3.4 Technology Considerations 14

3.5 Development Process 15

3.6 Actual Design 15

3.7 How the design changed 17

4 Testing 17

4.1 Unit Testing 22

4.2 Interface Testing 22

4.3 Acceptance Testing 22

4.4 Results 23

4

5 Implementation 23

5.1 Frontend 23

5.2 Backend 24

5.3 Web Scraping 24

6 Closing Material 25

6.1 Conclusion 25

6.2 References 27

7 Appendix 28

7.1 Appendix I 28

7.2 Appendix III 36

List of figures/tables/symbols/definitions

● Image 2.1 - Dependencies
● Image 2.2 - Project Plan (Spring)
● Image 2.3 - Project plan (Fall)
● Table 2.4 - Time Allocation
● Image 3.1 - screen mockups
● Image 3.6 - Actual app design
● Image 3.6.1 - Actual block diagram
● Image 3.7 - Proposed block diagram
● Image 4.1 - Jest test example
● Image 4.2 - Coverage from failed test
● Image 4.3 - Failed test received vs expected
● Image 4.4 - Html coverage from failed test
● Image 4.5 - Unreached lines and error from failed test
● Image 4.6 - Coverage from successful test
● Image 4.7 - Html coverage from successful test
● Image 4.8 - Fixed lines from successful test

5

1 Introduction

1.1 ACKNOWLEDGEMENT

Our client and advisor, Mat Wymore, is acknowledged for their contributions towards the
design of this project and remaining available to provide assistance as needed.

1.2 PROBLEM AND PROJECT STATEMENT

Online recipe blogs and websites are often confusing to understand and take a long time
to navigate with miscellaneous stories from the author and information other than the
recipe itself. This project aims to reformat and modify what the user sees to make the
recipes more comprehensible and easier to navigate.

For our project, we have developed a mobile app that makes these changes to a website
based on a URL provided by the user. We were able to accomplish this by building a web
scraping service which takes all the relevant information from a recipe website,
reorganizes and displays it in a concise manner on our custom mobile application. This
allows users to clearly understand the ingredients and instructions present in a recipe
website.

This app was designed with the aim to simplify the process of following recipes and
make the overall cooking experience more enjoyable. Additionally, we hope that recipes
that once might have been difficult to understand can become more straightforward,
allowing more users to utilize them.

1.3 OPERATIONAL ENVIRONMENT

This project was developed with the intention of online use only and is not expected to
function without access to the internet. Because of this, users may have different
experiences with the application depending on their internet connectivity. The constraint
of needing the internet, and a decent internet connection, may have an effect on the
location our application is used and limit some potential users. In terms of environmental
constraints, this app was designed to work in the context of an active kitchen which has
had a significant impact on a number of UI related decisions. UI elements and page
layouts were decided with the idea to ensure limited interaction with the app when the
user is in the kitchen and should be in a position to read the updated content clearly.

6

1.4 REQUIREMENTS

Requirements:
● Must work on a typical mobile device/smartphone
● May be platform specific (e.g. Android), though cross-platform is ideal
● Interface must be user-friendly (typical user is expected to be viewing device

from roughly one meter away and using one non-primary finger to navigate)
● Capable of loading/upgrading a recipe from an arbitrary URL
● "Upgraded" recipes should load in 5s or less
● Solution should not interfere with the source's revenue stream (e.g. ads should

still display)
● Should not require a user account (may be optional if it would help with desired

features)
● Should not require backend infrastructure (server)

Specialized Features:
● Hyperlink to images of different ingredients for visual assistance
● Easy unit conversion for the different quantities of ingredients
● Relevant substitutes/alternatives for specific ingredients in select recipes
● Hyperlinks to online/nearby stores where rare/specific ingredients can be

purchased
● Social and online sharing abilities for the recipes enhanced through the app
● Ability to bookmark and save the recipes which have been enhanced by the app

for easy access in the future
● Ability to scale recipes, as in multiply or divide ingredients proportionally.
● Listing quantities of the different ingredients in the instructions part of the

webpage

1.5 INTENDED USERS AND USES

Based on the base functionality and the benefits of the application that have been
described above, this app is geared towards a wide range of end users. The primary
objective of the product is to provide enhanced recipes to individuals who would benefit
from any of the features which have been listed above. Therefore, it is safe to conclude
that a large number of the end users for this app will be individuals who are just getting
into culinary practices or beginner cooks. However, easy access to only the ingredients
and instructions can also help save time for professional cooks when they are referring to

7

recipes. And the specialized UI scheme allows for the application to be used in the
kitchen may encourage even professional culinary experts to benefit from the enhanced
recipe app.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

1) The end product can be used globally with no restriction
2) The make and model of a preferred smartphone will not affect app compatibility
3) There will be no limitations with access to the required software and APIs during

development
4) The user puts in a URL address to one of the supported recipe websites

Limitations

1) This app will require constant internet connection since the websites are
‘enhanced in real time’

2) Specific features in the app will also require constant GPS data to provide
shopping information for the specialized ingredients

3) A new instance of the app will be loaded at each use due to the lack of external
database (one of the functional requirements put forward by the client)

4) The end product will only work on mobile devices. Thus a web version of the
product will not be available.

5) The application will only work on english websites
6) The application will only work on a list of supported sites found below. The app

supports mainstream recipe websites which are used by 80% of the target users
such as allrecipes.com

Note that assumption 4 and limitation 6 are caused because of the way our web scraping
is handled. The number of websites that can be used is limited since each one has to be
handled individually. The goal would be to eventually remove this limitation. See
appendix below for more details.

1.7 END PRODUCT AND DELIVERABLES

Project Deliverables

8

1) The final product delivered to the client is a cross platform mobile application
which successfully completes the base functionality of the application along with
some partially implemented special features.

2) Design and product mockups were delivered to the client on a bi-weekly basis
since the start of development.

2 Project Plan

2.1 RISKS AND RISK MANAGEMENT/MITIGATION

Planning - While we might have missed something in our planning process it will most
likely be able to be fixed at a later time. Rating: 0.1

Testing - It is possible that bugs and other issues may escape our testing when our
application is used on a wide variety of websites since they have a range of different
build styles. 0.7

Mitigation Plan: The best way for us to deal with this is to test our application on as
many different websites as possible, making sure it is tested on the largest and most
commonly used websites. As long as it works on the websites that get the majority of
the traffic it will not be as big of an issue if it doesn’t work well on small obscure
websites that few people use.

UI - The risks here are that the app might not be suitable for use in the kitchen or to
people with disabilities like poor eyesight or color blindness. Rating: 0.5

Mitigation Plan: We will do what we can to make the app as readable as possible by
using colorblind safe colors and making the font as large and readable as possible.
Furthermore, the UI elements have been selected in a manner to ensure that the app
can be navigated with the user’s non-dominant hand/finger since it will largely be
used in kitchen environments.

Feature Functionality - While it is possible for some of the libraries we use to depreciate
otherwise have issues, this is unlikely and as long as our application is coded well the
risks here should be minimized. Rating: 0.3

URL Safety - It is possible that a URL is not a valid URL, could redirect the user to an
unintended site, or contain hidden JavaScript. Our project is a local application and our
assumption is the user knows what is on the site they are trying to scrape. Therefore, this

9

should not be a large issue. This is categorized as a user decision from a risk perspective.
Rating: 0.3

2.2 PROJECT TRACKING PROCEDURES

As detailed below in the development processes, we employed an Egile form of software
development and management. Development was completed in two week sprint periods
and a MVP presentation at the end of each cycle. The complete project implementation
was broken down into smaller sections such as front or backend and further into specific
tasks which needed to be completed. These tasks were then picked by group members
from a sprint backlog. The following technologies and project tracking processes were
adopted for our project:

1) Discord - This is our IM channel for the project. Since all the team members and
our client are more used to the environment and features of Discord, we have
been using this as our primary mode of communication with the team and the
client (as an alternative to Slack).

2) Trello - Our initial objective was to use Trello to manage the tasks that need to be
completed in the two week sprint cycles. During the development cycle, our team
kept regular notes on Google docs and were able to effectively handle tasks
(tickets) directly from the document and hence depreciated the Trello use for this
project. While task management through a document did inhibit the team from
benefiting from the easy to use UI provided by Trello, we were able to meet the
scope of the project through this form of tasks management as well.

3) GIT - Github is being used as our primary project code repository. This is a code
management software which will allow multiple developers to collaborate on the
project simultaneously. Github also provides the team and the client a method to
keep track of code commits made by different team members to get a better
understanding of the overall project progress.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Detailed research was conducted by the team members during the design phase of the
project specifically into pre-existing solutions/products in the market which work with
the same topic as our project. While we were not able to find any applications which
provide the same service as our product, there are a number of applications in the market

10

which focus on improving the culinary experience with regards to finding and saving
recipes from across the internet.

Therefore, while addressing the previous works and literature for this project, a direct
comparison will not be made with another app which already exists in the market.
Alternatively, the functionality, the strengths and weaknesses of the different products
will be analyzed so that appropriate design decisions can be made during the
implementation of our application.

1) Paprika

The main objective of this app is to provide users with the opportunity to save recipes
from different web sources in one location for easy access. This app provides users with a
built in web browser and the ability to bookmark any favorite recipes which they come
across. The main strength of this application is that it provides users with the option to
save all of their favorite recipes in one easy to access location. But beyond this main
feature, the app does not provide users with any other options to further enhance the
recipes which they are viewing. Our proposed solution will provide users the option to
save recipes on the app while also providing other features to ‘enhance’ the recipes which
they find on the web.

2) BBC Good Food

The main selling point for this app is the wide variety of recipes available which have
been created by industry professionals and reviewed by thousands of users from across
the world. This provides the end user of this app with a well curated range of recipes with
feedback from other users to improve the overall cooking experience. Furthermore, users
are able to bookmark/save their preferred recipes on the phone for easy access in the
future. But on the other hand, this app does not specifically offer any other features for
the users to customize the recipes to their needs and view only the relevant information.
This would be the main difference between BBC Good Food and our proposed
application.

3) Tasty

Tasty uses a crowdsource approach to its recipes where users are able to actively
comment on the different sections of the recipe and offer suggestions and tweaks which
can be adopted by others who view the same recipe in the future. This allows the app to
provide a wide range of recipes with essential feedback and reviews provided by other
users of the app. While this app focuses on improving the recipes which are currently
available on the web, the approach taken by Tasty is very different from our proposed

11

solution which will not offer users the ability to rate and review recipes but provide them
with machine generated improvements such as easy unit conversion, improved
information layout and relevant visual aid.

3.2 DESIGN THINKING

During the design phase of the project, as a team, we focused on determining the most
effective product as the solution for the problem presented by our client. Over multiple
brainstorming sessions, we considered different options such as websites plugins
extensions. After thorough evaluation, we came to the conclusion that a mobile
application would be the best option. This option would provide the service to the largest
population of users since smartphones have become a major part of modern day living.
Furthermore, smartphones also come with preinstalled settings which are designed to
improve the user’s app experiences. The next step in the define phase was to brainstorm
the different features which could be included in our app to provide the users with an
‘enhanced’ recipe. During this phase, the team conducted research on different existing
apps in the market and discussed different services which can be provided by the app and
can be translated into features. And the final step of the define phase was to start coming
up with different UI mockups for the app and create a draft of the system design for the
application. During this process, mockups for the home screen and the recipe screen were
developed by the team to get a better idea of the placement of the different buttons and
features on the app screens.

During the ideate phase of the project, our main goal was to finalize the project
requirements (the features for our application), discuss the non-functional requirements
of the project and conduct sufficient technology research so that we do not face many
roadblocks during the actual implementation of the app. And the last step of the ideate
phase was to finalize the design of the product in terms of system diagrams and UI
mockups. This would adequately prepare us to begin development of the application in
the next phase of the project.

3.3 PROPOSED DESIGN

During the design phase of the project, our team had the following objectives to
complete:

- Identify all the functional and nonfunctional requirements
- Develop mockups of app UI

12

- Conduct research on technologies which will be used for this project

Before creating the design document for this project, the team finalized on the
requirements (seen in chapter 1). Mockups were also developed for the home page and
the recipe page of the mobile application. The objective of these mockups were to
provide the team with an idea of how the app will look from a design perspective and to
spark conversations between the team members and the client on where the different
components would go on each of the screens and the overall structure and page layouts of
the app. The following mockups are for the home screen and the recipe screens:

Image 3.1 - screen mockups

As seen above, the first mockup is of the home screen/URL screen. This will be the first
page which opens up when the app is launched. Since our app prioritizes ease of use, the
home screen will have very easy to understand structure. This page will contain the
title/logo, a text box for the user to enter the recipe website URL and we had initially
intended to put in app usage instructions but due to the super easy UI scheme employed
for this application, the team decided to forgo this section to reduce in-screen clutter. The
second screen mockup is of the actual recipe page itself. This page will contain the
enhanced recipe once the app has processed all the information from the original website.
A majority of the screen will be taken up to display the recipe information. This screen

13

also contains a number of button components at the top to use the different features
provided by our app. These include the option to change units, change portion sizes,
enable/disable advertisements and change the font to make it easy to read from long
distances. As mentioned earlier, these mockups were designed to meet all the feature
requirements of the app which were finalized with our client during the initial
brainstorming sessions of this project. One of the major design changes which were made
during the development phase of the project was to relocate the feature buttons to the
bottom of the screen since this is a more easy to access location on the phone screen
especially when considered from a kitchen scenario.

The design proposed above was developed after careful consideration on how they could
help meet the functional requirements of this project which were provided by the client.
As it can be seen in the above images, this program is designed to run on a standard iOS
and Android smartphone. Therefore, it follows the basic design principles of mobile
applications. Furthermore, another major requirement listed in chapter 1 is ease of use
with regards to the UI. Hence, the different components on the screen have been labeled
clearly to ensure that users are able to easily navigate through the app while cooking or in
the kitchen.

3.4 TECHNOLOGY CONSIDERATIONS

Since it was determined that we will be developing a cross-platform mobile application
which can function on both iOS and Android devices, we believe that using the React
Native Framework is the most appropriate option. Developing the app through React
ensures a smoother development process and reduces the additional effort of optimizing
the app for iOS and Android devices. While independent development for the two OS
would provide users with more features and an overall better app experience, this would
have doubled the work for the team and increased the overall implementation time since
we would have to learn different software and libraries which are native for Android and
iOS development.

Testing was also a major part of this project. Before launching the application it is
important to conduct a number of different tests to ensure that there are no logical errors
or UI bugs in the code. Since the app is being developed with React, we were able to use
a native Javascript testing framework called Jest. The use of this library provided us with
the option to conduct unit tests and system integration tests on the app and ensure that the
overall app experience remained smooth.

14

Another big decision made by the team was how to store our data. Many things were
considered to implement local data storage. The biggest though had to be MongoDB. We
considered this largely because it seemed simple and inexpensive to use and even had
libraries to connect easily to React Native. However, this was also partially because our
team thought JSON files would not work and were wrong on this assumption. In the end,
we went with JSON files because they did in fact work, were easier to use, and much
cheaper.

Figuring out how to save and read JSON files in React Native was also another challenge.
Initially this was done in node js using the fs library. However this library was not
compatible with React Native and so another compatible one needed to be found. Many
were found and tried but in the end the library expo-file-system was used because we
were using Expo and it was the one that worked best with it.

We decided to use Expo because it allowed for hot reloading, which meant that we could
make any changes to the code and save it, and the app would show the changes in live
time. In addition to this, it also incorporated an intuitive debugging environment and was
overall easier to use due to the option of various emulator devices than other competitors.

3.5 DEVELOPMENT PROCESS

For the development process, we employed an Agile form of software development
process. We had 2 week sprints throughout the development period and at each of these
MVP meetings, we discussed the project progress and discussed the net tasks that would
be picked and worked on from the sprint backlog. A minimum value product (MVP) was
presented to the client and the rest of the team at the end of the two week sprints where
items from the backlog were completed. This development process selected for this
project ensured that the client and the team members had a realistic idea of the project
progress and therefore were able to better plan out the next steps which need to be
completed in the upcoming sprint cycle.

3.6 ACTUAL DESIGN

The initial design (seen in 3.3) was not changed too much in the final iteration, most if
not all elements are still present in the final version. The only significant difference is that
it was made to look more professional using Styled Components. This can be seen below.

15

3.6 - Actual app design

In terms of overall structure the project essentially utilizes three components. A web
scraping function to pull and reorganize data from recipe websites, a backend to take the
scraped data and store it, and a front end to retrieve data from storage and display it to the
user. The block diagram below describes the path the data takes from beginning to end,
from the request to being displayed properly.

3.6.2 - final block diagram

16

The actions taken in each section will be discussed more thoroughly in their respective
sections.

3.7 HOW THE DESIGN CHANGED

Our design had to go through a few changes in order for the critical path to be completed.
The first change was with the front end design itself. We decided to change the color
scheme used to be more readable and in order to create a theme for the app. This can be
seen in the change from the original white/green background and light color buttons to
the gray and orange theme. The second big change was with the features included in the
final deliverable. We needed to drop some of the planned features, such as unit
conversion and scaling, in order to ensure quality main functionality. Overall though, the
original design for how each of the pieces remained largely the same. The big difference
was that originally we thought each piece of the app, such as the unit converter and
toggle switch, would interact directly with the reformatted data and display it. This
changed in the final version where the frontend of the app interacts with each of the
pieces and is the only part that actually displays the code. The below proposed block
diagram and actual block diagram above can be used to see this difference.

3.7 - proposed block diagram

4 Testing
1. Our project needed unit tests for modules, integrity tests for interfaces, acceptance tests
for all functional and nonfunctional requirements, black and white box testing for end
functionality and performance, and security testing.

2. The following lists items were tested and the types of tests we used throughout the
project:

17

a. Units: Unit Conversion for measurements, Retrieving Data from URL,
Scaling Measurements, Ensuring URL is safe.

b. Interfaces: Between UI and Retrieving Data from URL, Between
Retrieving URL and Ensuring URL is safe, Between UI and Scaling
Measurements/Unit Conversions.

c. Acceptance: All the functional and non-functional requirements and any
features that have been implemented. This includes, but is not limited to,
loading a recipe from an arbitrary URL, solution should not require a user
account, and solution should be user-friendly.

d. Black Box: Ensure end functionality is working properly. Such as our
functions for retrieving the website data from the URL are doing so.

e. White Box: Ensure the flow of input and output of the code inside our
functions is correct and to find improvements in design.

f. Security: URL retrieved should be valid, preventing redirect URLs, and
checking for hidden javascript in URLs.

3 & 4. Below is an example of a test case we have defined, designed, and developed. The
test below is part of a test suite designed to make sure the function we wrote to convert
from units in the metric system to the imperial system is working as intended. This test
has the goal to make sure the function converts properly between mL, specifically its
abbreviation, to an appropriate unit in the imperial system. These tests were written in
JavaScript in Visual Studio and tested using Jest, a native testing framework for
JavaScript. The example below has eight different test cases. The first test case
demonstrates converting 10 mL to imperial. This is done by passing a value of 10 and a
string of mL to our function. Our expectation is that the result will be 2 tsp.

Image 4.1

18

5. We ran the tests in the Jest framework by running our suites. We ran our suites with the
--coverage tag to provide more insight to how our functions are behaving, such as what
percentage of lines are being reached by our tests.

6. Below are the results we found on our initial run of our test suites. We discovered that
one of the tests was failing in the convert to imperial suite, the failed test was part of the
properly converts mL to imperial test that we outlined above, and the convert to imperial
suite did not have full statement, branch, and line coverage. Jest provided an html which
showed us the specific lines which were never reached by our code by highlighting them
red, which was helpful in determining where our problem existed.

Image 4.2

Image 4.3

19

Image 4.4

7. After some digging, we found that we were converting the measurement we passed to
the function to lower case but trying to compare it to mL with a capital L. To fix this we
changed that L to be lower case. The picture below shows where this was in our code.

Image 4.5

20

8. After making the changes and re-running our tests, we found the failed test now passes
and we have complete coverage for the statements, branches, and lines. In addition, the
html no longer has red lines indicating part of the code was never reached.

Image 4.6

Image 4.7

Image 4.8

21

9. The above process illustrates one example of how we plan to test our team’s JavaScript
code for this project. Our team continued to use Jest to help ensure our code is fully
tested. This is just an example for our unit testing but other types of testing might use a
different framework or program other than Jest.

4.1 UNIT TESTING

The following units will be tested in isolation; unit conversion for measurements,
retrieving data from a URL, scaling recipe measurements, ensuring the URL is safe, and
displaying UI elements.

Unit Conversion for measurements: Our plan was to have a function that has the ability to
convert recipe amounts between metric and imperial units and vice versa.

Retrieving data from a URL: Our plan was to have a function that takes an URL as input
and returns back the data from the website the URL points to.

Scaling Measurements: Our plan was to have a function that can scale the amounts
needed for each ingredient based on how many batches the user plans to make.

Ensure the URL is safe: We made a function that examines the URL and detects whether
it is safe or not.

4.2 INTERFACE TESTING

Our compositions of two or more interfaces were tested through UI observations resulting
from user input. Since we used the React Native framework to develop our application,
we had to use an emulator technology which could emulate both iOS and Android
performances. Therefore, for interface testing, we used the Expo CLI Quickstart testing
software which has been detailed in the previous chapters of this report.

4.3 ACCEPTANCE TESTING

Once all of our tests passed, we created a presentation for our client that demonstrates
and explains how all the requirements are being met. After the presentation, the client
will be provided with a user guide and the application itself to get some hands-on
interaction and the ability to test out the base functionality of the application.

22

4.4 RESULTS

We found a failure when trying to compare a string we had converted to lowercase with
one that we had set to have an upper case letter. After this problem was fixed, we
successfully created functions to scale batches and covert ingredient measurements
between the metric and imperial systems.

Using the Jest frameworks allowed the team to test our individual outputs and returns
from different code sections and immediately verify new code which was being written.
One of the major advantages of using EXPO CLI for testing was being able to
immediately see any code updates directly on the app itself especially for the frontend
development of the application since the UI changes could be seen clearly. This played a
significant role in successful testing since the team and the clients were able to
immediately see the updates of the application.

5 Implementation

5.1 FRONTEND

The frontend of our application had to be designed with simplicity in mind, as we wanted
it to be easily usable by someone who might have their hands full in the kitchen. In order
to successfully implement this, we only had two pages in our frontend; the home page
and the recipe page.

The home page consists of the app logo, a textbox to enter the recipe website’s URL in,
and a “Go” button that will send the URL to backend for parsing and then move to the
second page to display the information.

The second page receives the formatted information from the backend and then displays
it, making it easier to interpret instead of outputting a block of text. The output is in a
two-part format, with the first part being required ingredients and the second being
cooking instructions. In addition to this, there is a back button that allows the user to go
back to the previous page. There are another 3 buttons on the bottom of the screen that
were meant to adjust font size, scale the recipe, and switch any units from metric to
imperial and vice versa, but we were unable to finish those features at this time.

These pages were made in JS using React Native with the help of some VS Code
extensions such as Styled Components. These extensions allowed for a streamlined

23

customization of certain components such as buttons, textboxes, wrappers, sliders, etc. to
give the application a professional look and feel to it.

5.2 BACKEND

The backend for our project covers two main parts of the project. The first part consists
of any logic calculations needed for the features of the app. The second part is the storage
implementation for our project.

The logic calculations are done in JavaScript. JavaScript was chosen for the coding
language because of its ease of use with app development and therefore React Native.
There are 3 functions associated with the logic calculation for the project. The first is one
to convert metric units to imperial units, the second is to convert imperial units to metric
units, and the third is to scale the size of a given input by a given amount. The first two
functions are used to complete the unit conversion feature of the project. The third
function is used to complete the scaling requirement of the project. The three functions
have been tested, as shown above with Jest, to be successful and have complete code
coverage. We were unable to complete the features that use these functions.

JSON files used to implement the data storage for our project. After considerations for
different options, highlighted in section 3.4 Technology Considerations, JSON files were
determined to be the best for their simplicity, lightweight nature, and lack of an external
interaction. Three functions and the expo-file-system library for React Native were used
to make this possible. The file ReadJSON is responsible for the call the frontend makes to
read a JSON file. The file WriteJSON is similar but for writing files instead. Together the
two create the data interaction loop the frontend and web scraper both use. The third file,
useAsync, is a custom function that provides the frontend with a way to wait for the
information to be loaded. This is needed because the library call being used is
asynchronous, therefore the rest of the code continues without waiting on that step, there
is a chance the data is not loaded right away. Lastly, the library provides the app with a
way to access the file system on the mobile device running the application and provides a
location for use to save the files.

5.3 WEB SCRAPING

In order to take in data from recipe websites to display to the end user it first has to be
retrieved from the website and then transformed into a usable format. First the HTML is
retrieved from the website using fetch. It comes in a very raw form, so the strings then
need to be reformatted using various JavaScript string methods to shape it correctly to

24

then be parsed into JSON objects. Extra syntax is added and excess data is removed from
the data string. A JSON object is then created for the ingredients and a separate object is
made for the instructions. They are then combined into a single object and written to the
backend infrastructure.

6 Closing Material

6.1 CONCLUSION

The introductory phase of this project consisted of us identifying the problem statement
and brainstorming an initial plan of action that we would use as a solution for the issue at
hand. We identified our target audience as well and decided to choose a platform that
would allow the widest range of users to access our final product. We chose to go with a
mobile application for the end product as we believe this would allow people to quickly
and easily get the information they need without taking too much space in the kitchen.
We identified that the end users would most likely be someone who was interested in
cooking, whether they’re beginners or experienced in the culinary field already.

The design phase of this project was one of the more time intensive parts of the project
since the team had several discussions on the structure and UI designs for the app. By the
end of this phase, we were able to create realistic mockups of the URL screen and the
recipe screen which provided the client and everyone in the team with an idea on how the
end product would look after the completion of the development phase. In this phase of
the project, we also looked at pre-existing apps in the market which provide similar
services to the culinary industry. Research into ‘competing’ products gave us an
opportunity to evaluate the features which the app plans on offering to the users and how
they would be more beneficial compared to what is already available on the app stores.
And finally, the team also had a chance to finalize the design plan for the development
period. Since the app requirements, features and UI mockups have now been completed,
a majority of the time during the second semester of this project was spent on the
implementation of the app itself. The project team was divided up into smaller sections
where members were simultaneously working on the frontend, backend and the web
scraping service of the application.

For testing the application, we used Expo because of the numerous advantages it offered.
Expo has an intuitive debugging environment as well as hot reloading, which would
allow us to know that there was an error in the code right away, and then the debugging
software could be used directly afterward to fix any issues.

25

For the testing part of the project we started with unit tests for some JavaScript functions
including scaling ingredient quantities and converting between metric and imperial units.
After performing research, our team settled on using Jest to test our JavaScript code and
we plan to continue using the framework for the remainder of the project. Jest allows us
to write tests for our functions and see if our code passes them all. In addition, Jest allows
us to view an html form with additional information regarding code coverage. Using Jest,
our team will be able to ensure our code passes all the required tests and all of the code
we write is being covered by our tests. For other forms of testing such as interface testing,
our team will research ways to perform such tests as our project draws closer to needing
them.

In conclusion, over the course of the two semesters, the project team was able to map out
features, design a mobile application, conduct technology research and build out a cross
platform application which is able to complete all the base functionality of the app which
was listed out by our client. As expected in any project, the team experienced some
challenges with technology changes, implementation limitations and the development of
the additional specialized features. This was also a great learning opportunity for the team
members since everyone was able to learn a new form of application development and
associated technologies and relevant strategies which should be employed for successful
software project management as well. With a fully functional application with
successfully implemented base functionality, we are confident that this application can be
used to solve the client’s original problem of dealing with large amounts of irrelevant
information in modern recipe websites. Furthermore, with the application’s ability to
function on a wide range of smartphones and operating systems, the app can now be used
by a wide range of users from beginners to advanced culinary experts and everyone can
benefit from a fully streamlined modern day recipe website.

26

6.2 REFERENCES

[1] Amit Thinks. How to run JavaScript on Visual Studio Code. (Oct. 13, 2020). [Online
Video]. Available: https://www.youtube.com/watch?v=Z_G86SKXP3s. Accessed:
Apr. 24, 2021.

[2] Ben Awad. Running Create React Native App on Your Phone. (Dec. 31, 2017).
[Online Video]. Available: https://www.youtube.com/watch?v=mhoiwfShSnE.
Accessed: Apr. 24, 2021.

[3] Jordan Walke. “React Native Documentation” React Native https://reactnative.dev/
Accessed: Apr. 25, 2021

[4] LevelUpTuts. React Native For Everyone Preview. (June 5, 2017). [Online Video
Playlist]. Available:
https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hH
B5. Accessed: Apr. 24, 2021.

[5] “Setting up the development environment · React Native,” React Native, Mar. 12,
2021. [Online]. Available: https://reactnative.dev/docs/environment-setup. Accessed:
Apr. 24, 2021.

[6] Web Dev Simplified. Introduction To Testing In JavaScript With Jest. (Sep. 24,
2019). [Online Video]. Available: https://www.youtube.com/watch?v=FgnxcUQ5vho.
Accessed: Apr. 24, 2021.

[7] “Installation.” Expo Documentation. [Online]. Available:
https://docs.expo.dev/get-started/installation/. Accessed: Dec. 8, 2021.

27

https://www.youtube.com/watch?v=Z_G86SKXP3s
https://www.youtube.com/watch?v=mhoiwfShSnE
https://reactnative.dev/
https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hHB5
https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hHB5
https://reactnative.dev/docs/environment-setup
https://www.youtube.com/watch?v=FgnxcUQ5vho
https://docs.expo.dev/get-started/installation/

7 Appendix
7.1 APPENDIX I

To start the application, you will need to first have Expo. Details can be found here. After
you have downloaded Expo, locate your working directory through your command
prompt.

After the directory is found, run “npm install” and then “yarn install”.

28

https://docs.expo.dev/get-started/installation/

Once these steps have been taken, run “Expo start” which should redirect you to a
webpage.

29

30

31

Once this webpage appears, download the Expo GO application on your mobile device
and then scan the QR Code. It should redirect you directly to the application.

This is the loading screen that will pop up while the application is starting up.

32

Pictured above is the home page of the application, this is where you would input the
URL for a recipe that you are interested in.

33

Once the URL has been pasted in, simply hit the “Go!” button.

34

Once on this page, you can scroll through the ingredients and instructions, and tap the
back button on the top right of the page once you want to return to the home page or
input a different URL.

35

7.2 APPENDIX III

Challenges & Lessons Learned:

● Training / Knowledge
● Over promising
● Focus main functionality and then feature update
● Time is limited, this is not our only class
● In person meetings are nice
● Better task manager

Training and knowledge were a big part of our project. Almost everything we worked
with to develop this app was new to our team. Learning something new takes quite a bit
of time. The lesson we learned here is that we could have spent more time training at the
beginning to avoid over searching towards the end of the project. Also, having to search
for the libraries, frameworks, etc. we are going to use and learn them to see if they work
takes a lot of time as well.

Over promising is a big lesson our team learned this semester. Our client asked for a
pretty straightforward app at the beginning. Our team then came up with extra features to
add. Instead of having those be additional features we could work on should extra time be
available, we promised to have them done by the end of the semester. It is ok to plan
extra features but it is better to only promise the base functionality for the project and not
everything.

Another lesson that ties into the previous one, is to focus on the main functionality of the
project first and then release updates with new features. Our team started by just working
on everything in one go including the extra features. This caused us to not have as much
time to devote to the base functionality and made it take much longer than needed to
complete. Our team would have benefitted larger from getting that completed first and
then trying to get the features done second.

Time is a big lesson our team learned this semester. It is a limited resource and always
runs out faster than you think.

In person meetings are very valuable and that has been something we have missed since
the start of COVID. There are so many benefits to having in person meetings such as
building team energy, reducing distractions, and clearer communications to name a few.
Our team learned that if you can have in person meetings, strongly consider doing so.

Having a good task manager is another lesson we learned. Our plan was to use trello to
manage our tasks and stay focused. Our team ended up using google docs instead. This
worked out well for keeping track of who was doing each task but not as well as an actual

36

manager. In addition, using google docs we lost out on the many features a task manager,
like Trello, provides that make things easy to manage.

Future Expansions:

● Loading from arbitrary URL
● Scaling and unit conversions
● Including measurements/amounts in instructions
● Font size adjustments
● The revenue stream

The above bullets are requirements that were not fully complete due to limited time. The
biggest problem with the first three bullets is being able to parse large amounts of data
that could come in a large variety effectively. One solution that could solve that is to look
into a machine learning/natural language processing solution.

As for the revenue stream requirement, the solution our team was going to use was to
include a toggle switch that would hide/show the ads and author’s original content.

37

